
railroadtracks Documentation
Release 0.3.1

Laurent Gautier (laurent.gautier@novartis.com)

December 08, 2014

CONTENTS

1 Introduction 3
1.1 Tutorial . 4

2 Installation 5
2.1 Requirements . 5
2.2 Installation . 6

3 Recipes 7
3.1 Steps and assets . 7
3.2 Setup . 11
3.3 Simple recipe . 11
3.4 Loops, nested loops, and many variants . 13
3.5 Docstrings . 15
3.6 Troubleshooting . 18

4 Model 19
4.1 Overview . 19
4.2 Activities . 20
4.3 Inheritance diagram . 21
4.4 Docstrings . 21

5 Extending the framework 23
5.1 Writing custom steps . 23
5.2 Unified execution . 26

6 Unified execution 27
6.1 Version number . 27
6.2 Running a step . 28
6.3 Using a scheduler/Queueing system . 28
6.4 Docstrings . 28

7 Persistence 31

8 Index and tables 35

Python Module Index 37

Index 39

i

ii

railroadtracks Documentation, Release 0.3.1

A toolkit to connect (D|R)NA-Seq steps

CONTENTS 1

railroadtracks Documentation, Release 0.3.1

2 CONTENTS

CHAPTER

ONE

INTRODUCTION

It is true that the most ancient peoples, the first librarians, employed a language quite different from the
one we speak today; it is true that a few miles to the right, our language devolves into dialect and that
ninety floors above, it becomes incomprehensible.

—Jorge Luis Borges, The Library of Babel

The processing of Next-Generation Sequencing (NGS) data is generally achieved through a sequence of steps called
a pipeline. Changing steps in the pipeline, or changing parameters for steps, or adding input data while wishing
to compare the alternative outcomes requires tedious bookkeeping, tailored code for the alternatives, and possibly
computing several times the tasks common to several alternatives.

railroadtracks is a Python toolkit with the following capabilities:

Track task dependencies The toolkit is keeping persistently the files used by all tasks in a project, and is providing
intuitive ways to navigate complex dependency graphs.

Decouple declaration from execution railroadtracks allows the creation of all interconnected computational tasks
required for a project before any computation is performed. This, added to the model aspect, allows consistency
checks early instead of discovering issues after a number of computation tasks have already been performed.
This is also permitting the use different scheduling systems within a project. The toolkit is providing an execu-
tion layer using multiprocessing1, and custom execution layers can be added.

Implicit naming of result files The toolkit is making a clear separation between the meta-data for a result file (how
was a result file obtained) from its file name. User can write complete pipelines, while only specifying the file
names for the input data at the root of the dependency graph.

Incremental writing of analysis pipelines The persistent tracking of task dependencies permits the incremental
writing of data processing pipelines without explicit bookkeeping nor unnecessarily repeated computations.
Pipelines can be modified, with new input files added, tools used changed, while only new required computa-
tions are performed.

Standardization into models By providing a system to wrap tools into model classes, railroadtracks allows a
standardization of these tools that allows both an easy connection between steps and the ability to swap between
similar tools. This and the implicit naming of result files makes the combination of tools or parameters trivial.

REPL-aware railroadtracks was designed with interactive programming (REPL) in mind, and ipython and the
ipython notebook as a showcase environment. High-level rendering of objects is provided (text, HTML) as well
as visualization (provenance and destination graphs) are provided. The autocompletion of Python namespaces
is also part of our design.

Models DNA and RNA sequencing (batteries included) While it is possible to extend railroadtracks with
custom models, a number of modeled steps for generating synthetic reads, aligning, quantifying, testing for
differential expression, are already included.

1http://docs.python.org/library/multiprocessing.html#module-multiprocessing

3

http://docs.python.org/library/multiprocessing.html#module-multiprocessing

railroadtracks Documentation, Release 0.3.1

1.1 Tutorial

Tutorial as an IPython notebook [html | pynb]

4 Chapter 1. Introduction

CHAPTER

TWO

INSTALLATION

2.1 Requirements

This was developed for Python 2.7.

Note: While a keen attention has been paid to compatibility with Python 3, the use of metaclasses in this packages
and the incompatibility of syntax with them between Python 2 and 3 prevents this package from currently working
with Python 3. This is the major blocker for Python 3-compatibility and we plan on using six to solve this.

A number of python packages are required or recommended (all of which are available on Pypi
<https://pypi.python.org/pypi>):

• jinja2 <http://jinja.pocoo.org/>

• networkx <https://networkx.github.io/>

• pygraphviz <https://pygraphviz.github.io/>

• enum34 <https://pypi.python.org/pypi/enum34>

• ngs_plumbing <http://pythonhosted.org/ngs_plumbing/>

The model steps included require a number of third-party tools in order to have all steps working. A missing tool does
not prevent this package from working, but the related functionality will not be working.

At the time of writing, the tools are:

• samtools <http://samtools.sourceforge.net>

• bowtie <http://bowtie-bio.sourceforge.net/>

• bowtie2 <http://bowtie-bio.sourceforge.net/bowtie2>

• tophat <http://ccb.jhu.edu/software/tophat/index.shtml>

• tophat2 <http://ccb.jhu.edu/software/tophat/index.shtml>

• GSNAP <http://research-pub.gene.com/gmap/>

• sailfish <http://www.cs.cmu.edu/~ckingsf/software/sailfish/>

• STAR <https://github.com/alexdobin/STAR>

• HTSeq <http://www-huber.embl.de/users/anders/HTSeq> (for the executable htseq-count)

• R <http://www.r-project.org>, with libraries:

– rjson <http://cran.r-project.org/package=rjson> (required for any interaction with R)

and bioconductor libraries

5

railroadtracks Documentation, Release 0.3.1

– Rsubread <http://www.bioconductor.org/packages/release/bioc/html/Rsubread.html> (for feature-
Count)

– DESeq <http://www.bioconductor.org/packages/release/bioc/html/DESeq.html>

– DESeq2 <http://www.bioconductor.org/packages/release/bioc/html/DESeq2.html>

– limma <http://www.bioconductor.org/packages/release/bioc/html/limma.html> (for the method
voom)

– edgeR <http://www.bioconductor.org/packages/release/bioc/html/edgeR.html>

Note: Running the tests with -v (see below) will tell which tools are missing to have all functionality.

The package is including a small genome (Enterobacteria phage MS2 isolate ST4 retrieved from the NCBI site:
http://www.ncbi.nlm.nih.gov/nuccore/EF204940.1 - bibliographic reference Friedman SD et al., J Virol. 2009
Nov;83(21):11233-43. doi: 10.1128/JVI.01308-09. <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2772794/>) as
FASTA, as well as GTF/GFF derived from its genome annotation, for the purpose of running tests and examples.

2.2 Installation

This is a regular Python package. It can be installed with

python setup.py install

Running the unit-tests can be done after installation

python -m railroadtracks.tests # for a detail of the tests, add "-v"

Note: While the unit tests use a very small dataset included in the package (a viral genome), running the test can
take a bit of disk space (for instance, at the time of writing STAR indexes take a rather large amount of space for an
otherwise rather small genome).

6 Chapter 2. Installation

http://www.ncbi.nlm.nih.gov/nuccore/EF204940.1

CHAPTER

THREE

RECIPES

The model, together with the persistence layer, is designed to make the writing of sequences of steps for RNA-Seq
data processing rather simple and and make changing to an alternative step

(e.g., aligner, differential expression method, etc...)

trivial. This is also designed to make coexisting variants something a user does not have to worry about (unless inclined
to - the system is open).

Note: The general principles to remember are limited to:

• Steps require assets to run (and optionally parameters)

• Assets are constituted of two groups: source and target elements

• Parameters are optionally given

The bundle of source and target assets, parameters, and a step represents a task. Explanations about step and assets
follow.

>>> source = SomeStep.Assets.Source(inputentity)
>>> target = SomeStep.Assets.Target(outputentity)
>>> assets = SomeStep.Assets(source, target)
>>> step = SomeStep(pathtoexecutable)
>>> step.run(assets)

3.1 Steps and assets

3.1.1 Concept

All steps in the process are connected through intermediate data files which we call assets. Bioinformatics tools are
almost always designed to operate on files, with the occasional pipes being used.

A step can be represented as the step itself with input files (the source assets) and output files (the target assets).

7

railroadtracks Documentation, Release 0.3.1

Some data

Step

Product

Other data

This group of nodes (here 4 nodes: 2 source, 1 step, 1 target) can also be collapsed as a step, and the representation of
a workflow be the graph connecting this summary representation.

For example, the initial steps for aligner-based RNA-Seq can be represented as:

High-level

Index

Align

Count

8 Chapter 3. Recipes

railroadtracks Documentation, Release 0.3.1

The Step-and-Assets graph will then look like this:

Index

Align

Count

Reference Genome

Indexer

Indexed Genome

Indexed Genome

Aligner

Aligned Reads

Reads 1Reads 2

Aligned Reads

Counter

Digital Gene Expression

Reference Annotation

The nodes Indexed Genome and Aligned Reads are duplicated for clarity with the grouping of nodes, but it is the same
entity saved on disk produced and used by the two steps.

When using the framework, the easiest way to think about it is to start from a step (child class of StepAbstract),

3.1. Steps and assets 9

railroadtracks Documentation, Release 0.3.1

and look for the attribute Assets. That attribute is a class representing the step’s assets, and is itself containing 2
class attributes Source and Target (themselves classes as well).

For example with the class modeling the aligner “STAR”:

import railroadtracks.rnaseq import StarIndex, StarAlign

assets for the indexing of references (indexed for the alignment)
StarIndex.Assets
assets for aligning reads against indexed references
StarAlign.Assets

The assets are divided into two sets, the Source and the Target, for the files the step is using and the files the step is
producing respectively. Source and Target are themselves classes.

import railroadtracks.rnaseq import StarIndex, StarAlign

assets for the indexing of references (indexed for the alignment)
fastaref = rnaseq.SavedFASTA('/path/to/referencegenome.fasta')
indexedref = rnaseq.FilePattern('/path/to/indexprefix')
StarIndex.Assets(StarIndex.Assets.Source(fastaref),

StarIndex.Assets.Target(indexedref))

The results are somewhat verbose, but if an IDE or an advanced interactive shell such as ipython is used, autocom-
pletion will make writing such statements relatively painless, and mostly intuitive. One can just start from the step
considered (StarIndex in the example above) and everything can be derived from it.

3.1.2 Unspecified assets

In a traditional approach, for example a sequence of commands in bash, the name of files must be specified at each
step.

We are proposing an alternative with which a full recipe can be written without having to take care of file names for
derived data (which can be a relative burden when considering to process the same data in many alternative ways).
Only the original data files such as the reference genome, or the experimental data from the samples and sequencing,
are specified and the other file names will be generated automatically.

Objects inheriting from AssetSet are expected to have a method AssetSet.createundefined() that creates
an undefined set of assets, and this can be used in recipes (see example below).

Foo = core.assetfactory('Foo', [core.AssetAttr('bar', core.File, '')])
create an undefined set of assets of type Foo
undefoo = Foo.createundefined()

3.1.3 Notes about the design

Data analysis is often a REPL activity, and we are keeping this in mind. The writing of a recipes tries to provide:

• autocompletion-based discovery. Documentation is rarely read back-to-back (congratulations for making it this
far though), and dynamic scientists often proceed by trial-and-error with software. The package is trying to
provide benevolent support when doing so.

• fail early whenever possible (that is before long computations have already been performed)

• allow the writing of a full sequence of steps and run them unattended (tasks to be performed are stored, and
executed when the user wants to)

10 Chapter 3. Recipes

railroadtracks Documentation, Release 0.3.1

3.2 Setup

-- initialization boiler plate code
import tempfile
from railroadtracks import hortator, rnaseq, easy
from environment import Executable

wd = tempfile.mkdtemp()
project = easy.Project(rnaseq, wd=wd)

declare the 3rd-party command-line tools we will use
env = easy.Environment(rnaseq)

The package is also able to generate a small dataset based on a phage:

Phage genome shipped with the package for testing purposes
import railroadtracks.model.simulate
PHAGEFASTA = railroadtracks.model.simulate.PHAGEFASTA
PHAGEGFF = railroadtracks.model.simulate.PHAGEGFF

create random data for 6 samples (just testing here)
nsamples = 6
samplereads = list()
with open(PHAGEFASTA) as fasta_fh:

reference = next(railroadtracks.model.simulate.readfasta_iter(fasta_fh))
for sample_i in range(nsamples):

read1_fh = tempfile.NamedTemporaryFile(prefix='read1', suffix='.fq')
read2_fh = tempfile.NamedTemporaryFile(prefix='read2', suffix='.fq')
read1_fh, read2_fh = railroadtracks.model.simulate.randomPEreads(read1_fh,

read2_fh,
reference)

samplereads.append((read1_fh, read2_fh))

sampleinfo_fh = tempfile.NamedTemporaryFile(suffix='.csv')
csv_w = csv.writer(sampleinfo_fh)
csv_w.writerow(['sample_id', 'group'])
for i in range(6):

csv_w.writerow([str(i), ('A','B')[i%2]])
sampleinfo_fh.flush()
referenceannotation = rnaseq.SavedGFF(PHAGEGFF)

3.3 Simple recipe

steps used
bowtie2index = env.activities.INDEX.bowtie2build
bowtie2align = env.activities.ALIGN.bowtie2
htseqcount = env.activities.QUANTIFY.htseqcount
merge = env.activities.UTILITY.columnmerger
edger = env.activities.DIFFEXP.edger

import easy

sequence of tasks to run
torun = list()

index for alignment

3.2. Setup 11

railroadtracks Documentation, Release 0.3.1

Assets = bowtie2index.Assets
assets = Assets(Assets.Source(rnaseq.SavedFASTA(reference_fn)),

Assets.Target.createundefined())
task_index = project.add_task(bowtie2index, assets)
torun.append(task_index)

process all samples
sample_counts = list()
for read1_fh, read2_fh in samplereads:

align
Assets = bowtie2align.Assets
assets = Assets(Assets.Source(task_index.call.assets.target.indexfilepattern,

rnaseq.FASTQPossiblyGzipCompressed(read1_fh.name),
rnaseq.FASTQPossiblyGzipCompressed(read2_fh.name)),

Assets.Target.createundefined())
task_align = project.add_task(bowtie2align, assets)
torun.append(task_align)

quantify
(non-default parameters to fit our demo GFF)
params = rnaseq.HTSeqCount._noexons_parameters
Assets = htseqcount.Assets
assets = Assets(Assets.Source(task_align.call.assets.target.alignment,

rnaseq.SavedGFF(referenceannotation)),
Assets.Target.createundefined())

task_quantify = project.add_task(htseqcount,
assets,
parameters=params)

torun.append(task_quantify)
keep a pointer to the counts,
as we will use them in the merge step
sample_counts.append(task_quantify.call.assets)

merge the sample data into a table
(so differential expression can be computed)
Assets = merge.Assets
counts = tuple(x.target.counts for x in sample_counts)
assets = Assets(Assets.Source(rnaseq.SavedCSVSequence(counts)),

merge.Assets.Target.createundefined())
task_merge = project.add_task(merge,

assets,
parameters=("0","1"))

torun.append(task_merge)

differential expression with edgeR
Assets = edger.Assets
assets = Assets(Assets.Source(task_merge.call.assets.target.counts,

rnaseq.SavedCSV(sampleinfo_fh.name)),
Assets.Target.createundefined())

task_de = project.add_task(edger,
assets)

run the tasks
for task in torun:

run only if not done
if task.info[1] != hortator._TASK_DONE:

task.execute()

12 Chapter 3. Recipes

railroadtracks Documentation, Release 0.3.1

get results
final_storedentities = project.get_targetsofactivity(rnaseq.ACTIVITY.DIFFEXP)

get the step that created the results files
final_steps = list()
for stored_entity in final_storedentities:

final_steps.append(project.todo._cache.get_parenttask_of_storedentity(stored_entity))

The variable wd contains the directory with all intermediate data and the final results, and db_dn is the database file.

Note: If you clean up after yourself, but want to run the next recipe in this documentation, the setup step will have to
be run again.

3.4 Loops, nested loops, and many variants

import easy

torun = list()

bowtie
bowtie1index = env.activities.INDEX.bowtiebuild
bowtie1align = env.activities.ALIGN.bowtie
Assets = bowtie1index.Assets
fa_file = rnaseq.SavedFASTA(reference_fn)
task_index_bowtie1 = project.add_task(bowtie1index,

Assets(Assets.Source(fa_file),
None))

torun.append(task_index_bowtie1)

bowtie2
bowtie2index = env.activities.INDEX.bowtie2build
bowtie2align = env.activities.ALIGN.bowtie2
Assets = bowtie2index.Assets
fa_file = rnaseq.SavedFASTA(reference_fn)
task_index_bowtie2 = project.add_task(bowtie2index,

Assets(Assets.Source(fa_file),
None))

torun.append(task_index_bowtie2)

STAR
starindex = env.activities.INDEX.starindex
staralign = env.activities.ALIGN.staralign
Assets = starindex.Assets
fa_file = rnaseq.SavedFASTA(reference_fn)
task_index_star = project.add_task(starindex,

Assets(Assets.Source(fa_file),
None))

torun.append(task_index_star)

TopHat2
(index from bowtie2 used)
#tophat2 = env.activities.ALIGN.tophat2

HTSeqCount
htseqcount = env.activities.QUANTIFY.featurecount

3.4. Loops, nested loops, and many variants 13

railroadtracks Documentation, Release 0.3.1

Merge columns (obtained from counting)
merge = env.activities.UTILITY.columnmerger

EdgeR, DESeq, DESeq2, and LIMMA voom
edger = env.activities.DIFFEXP.edger
deseq = env.activities.DIFFEXP.deseq
deseq2 = env.activities.DIFFEXP.deseq2
voom = env.activities.DIFFEXP.limmavoom

Now explore the different alignment presets in bowtie2, and vanilla star
from itertools import cycle
from collections import namedtuple
Options = namedtuple('Options', 'aligner assets_index parameters')
Try various presets for bowtie2
bowtie2_parameters = (('--very-fast',), ('--fast',),

('--sensitive',), ('--very-sensitive',))
options = [Options(*x) for x in zip(cycle((bowtie2align,)),

cycle((task_index_bowtie2.call.assets.target,)),
bowtie2_parameters)]

add bowtie
options.append(Options(bowtie1align, task_index_bowtie1.call.assets.target, tuple()))
add STAR (vanilla, no specific options beside the size of index k-mers)
options.append(Options(staralign,

task_index_star.call.assets.target,
('--genomeChrBinNbits', '12')))

add TopHat2
#options.append(Options(tophat2, task_index_bowtie2.call.assets.target, tuple()))

loop over the options
for option in options:

sample_counts = list()
loop over the samples
for sample_i in range(nsamples):

read1_fh, read2_fh = samplereads[sample_i]
align
Assets = option.aligner.Assets
assets = Assets(Assets.Source(option.assets_index.indexfilepattern,

rnaseq.FASTQPossiblyGzipCompressed(read1_fh.name),
rnaseq.FASTQPossiblyGzipCompressed(read2_fh.name)),

Assets.Target.createundefined())
task_align = project.add_task(option.aligner,

assets,
parameters=option.parameters)

torun.append(task_align)

quantify
(non-default parameters to fit our demo GFF)
Assets = htseqcount.Assets
assets = Assets(Assets.Source(task_align.call.assets.target.alignment,

rnaseq.SavedGFF(referenceannotation)),
Assets.Target.createundefined())

task_quantify = project.add_task(htseqcount,
assets)

torun.append(task_quantify)

keep a pointer to the counts, as we will use it in the merge step

14 Chapter 3. Recipes

railroadtracks Documentation, Release 0.3.1

sample_counts.append(task_quantify.call.assets)

merge the sample data into a table (so differential expression can be computed)
Assets = merge.Assets
source = Assets.Source(rnaseq.SavedCSVSequence(tuple(x.target.counts\

for x in sample_counts)))
assets_merge = Assets(source,

Assets.Target.createundefined())
task_merge = project.add_task(merge,

assets_merge,
parameters=("0","1"))

torun.append(task_merge)

differential expression with edgeR, deseq2, and voom
(deseq is too whimsical for tests)
for diffexp in (edger, deseq, deseq2, voom):

Assets = diffexp.Assets
assets = Assets(Assets.Source(task_merge.call.assets.target.counts,

core.File(sampleinfo_fh.name)),
Assets.Target.createundefined())

task_de = project.add_task(diffexp,assets)
torun.append(task_de)

run the tasks
for task in torun:

if task.info[1] != hortator._TASK_DONE:
try:

task.execute()
status = easy.hortator._TASK_DONE

except:
status = easy.hortator._TASK_FAILED

project.todo._cache.step_concrete_state(task.task_id,
easy.hortator._TASK_STATUS_LIST[status])

3.5 Docstrings

Module aiming at making common operations “easy”.

class railroadtracks.easy.ActivityCount
ActivityCount(count, name, status)

count
Alias for field number 0

name
Alias for field number 1

status
Alias for field number 2

class railroadtracks.easy.Asset(project, savedentity, asset_id)
An asset is either used by a task (then it is a source asset) or is produced by a task (then it is a target asset).

entity
Instance of SavedEntityAbstract (or rather a child class thereof).

class railroadtracks.easy.DbID
DbID(id,)

3.5. Docstrings 15

railroadtracks Documentation, Release 0.3.1

id
Alias for field number 0

class railroadtracks.easy.Environment(model)
Represent the current environment in a (presumably) easy way for writing recipes.

__init__(model)

Parameters model – Python module following the railroadtracks model.

activities
Access the activities declared by the model as attributes.

stepclasses
Steps.

stepinstances
Default instance for the steps (created from the default executables in the PATH).

class railroadtracks.easy.Project(model, wd=’railroadtracks_project’, db_fn=None,
force_create=False)

A project, that is a directory containing data as well as a persistant storage of steps and how derived data and
final results were obtained.

__init__(model, wd=’railroadtracks_project’, db_fn=None, force_create=False)

Parameters

• wd (str1) – Name of a working directory (where all intermediate and final results will be
saved.

• db_fn (str2 or None) – Name of a file name for the database. If None, use the file
“railroadtracks.db” in the directory specified in “wd”.

Return type a tuple with (hortator.StepGraph, working directory as a str3, file name
for the database and a str4)

add_task(step, assets, parameters=(), tag=1)
Add a task to the project. If any of the assets’ targets is not defined, it will be defined automatically.

Parameters

• step –

• assets –

• parameters –

• tag – a tag (to differentiate repetitions of the exact same task)

db_fn
Path to the database file

get_targetsofactivity(activity)
Retrieve the targets of steps performing a specific activity. (calls the method of the same name in the
contained PersistentTaskList) :param activity: an activity :type activity: Enum

get_targetsoftype(obj)
Retrieve the targets having a given type. (calls the method of the same name in the contained

1http://docs.python.org/library/functions.html#str
2http://docs.python.org/library/functions.html#str
3http://docs.python.org/library/functions.html#str
4http://docs.python.org/library/functions.html#str

16 Chapter 3. Recipes

http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str

railroadtracks Documentation, Release 0.3.1

PersistentTaskList) :param obj: a type, an instance, or a type name :type obj: type5, Object,
or str6

get_task(task_id)
Given a task ID, retrieve the associated task.

iter_srcassets(task)
Return the source files for a given task (calls the method of the same name in the contained
PersistentTaskList) :param task: a Task.

iter_targetassets(task)
Return the target files for a given task (calls the method of the same name in the contained
PersistentTaskList) :param task: a Task.

model
Model used in the project.

newproject
Tell whether this is a new project, rather than a existing project (re)opened.

wd
Working directory. The directory in which derived data is stored.

class railroadtracks.easy.Task(project, call, task_id)
A task.

all_child_tasks()
Get all the child tasks, direct or indirect.

call
A railroadtracks.unifex.Call object.

child_tasks()
Tasks depending on the current task.

dirname
Directory in which the targets of the task are saved.

execute()
Execute the task. Note that the status of the task known to the project is not updated.

info
Status information for the task.

parent_tasks()
Tasks the current task is depending on.

primordial_tasks()
Direct or indirect parent tasks with source assets that do not have parent tasks themselves. In other words,
root nodes in the dependency graph connected to this task.

This method is useful to identify the raw data results are derived from.

project
Project in which the task is defined.

status
Get/Set the status of the task in the project. The value must be a valid task status.

task_id
ID of the task in the project.

5http://docs.python.org/library/functions.html#type
6http://docs.python.org/library/functions.html#str

3.5. Docstrings 17

http://docs.python.org/library/functions.html#type
http://docs.python.org/library/functions.html#str

railroadtracks Documentation, Release 0.3.1

unifex_cmd()
Parsed command to run the task.

To make a string to copy/paste into a shell script, use subprocess.list2cmdline().

unifex_cmdline()
Command line as could be run in a shell. (This is a wrapper around subpro-
cess.list2cmdline(self.unifex_cmd()))

railroadtracks.easy.Task2
alias of Step

class railroadtracks.easy.TaskSet(project=None, iterable=())
Ordered set of tasks. This class can be used for independent tasks for which the order of completion does not
matter, and provide a container for tasks that can run in parallel.

add(task)
Add a task.

remove(task)
remove a task.

status()
Return a Counter of status labels.

values()
Return the tasks as a tuple (Python 2) or an iterator (Python 3).

railroadtracks.easy.call_factory(project, step_concrete_id, stepobj, assets, parameters=())

Parameters

• stepobj (instance of StepAbstract) – Step object

• assets (instance of AssetsStep) – assets

Return type function

railroadtracks.easy.command_line(project, stepconcrete_id, stepobj, assets, parameters=())

Parameters

• stepobj (instance of StepAbstract) – Step object

• assets (instance of AssetsStep) – assets

Return type a named tuple with the arguments for a command line call

3.6 Troubleshooting

The standard Python module logging7 is used for logging, and its documentation should be checked. For example,
a very simple way to activate logging at the level DEBUG on stdout:

import railroadtracks
logger = railroadtracks.logger
logger.setLevel(railroadtracks.logging.DEBUG)
railroadtracks.basicConfig('/tmp/stdout')

7http://docs.python.org/library/logging.html#module-logging

18 Chapter 3. Recipes

http://docs.python.org/library/logging.html#module-logging

CHAPTER

FOUR

MODEL

4.1 Overview

The steps in a RNA-Seq sequence of operations are captured in a model. The purpose is to formalize the steps enough
to simplify the use of various tools for each step, yet permit enough flexibility to allow an easy integration of additional
tools and approaches.

A canonical graph of steps for RNA-Seq is shown below.

Note: There is no enforcement that a sequence of steps adheres strictly to this. The model is also defining the notion
of activities, and it is possible that one step performs several activities (this will be the case for an in-house monolithic
pipeline, for example). This feature allows us to integrate such steps into the comparison.

The model is directly used to provide an unified execution scheme (see Unified execution), and constitutes the basis
for writing “recipes” (see Recipes).

19

railroadtracks Documentation, Release 0.3.1

repository of genomes

References

Transcript Annotations Indexed References

Alignment

Counts

Sequencing Reads

Normalized Counts

Abundance Estimates

Differential Expression

Sample Information

Sample

4.2 Activities

Steps can perform one or several activities. The list of possible activities is in ACTIVITY

20 Chapter 4. Model

railroadtracks Documentation, Release 0.3.1

4.3 Inheritance diagram

ACTIVITYEnum

Anyscript

StepAbstract

CRCHeadTail

ColumnMerger

Quant ifierAbstract

Normalizer

PicardCollectAlignmentSummaryMetrics

SorterAbstract

AssetsAnyscript

AssetsStep

AssetsCRCHeadTail

AssetsColumnMerger

AssetsNormalizer

AssetsQuant ifier

AssetsSorter

FastqFilePair GzipFastqFilePair

FeatureCount

HTSeqCount

SailfishQuant

SamtoolsSorterByID

4.4 Docstrings

Simple model for the expression analysis using RNA-Seq

class railroadtracks.rnaseq.ACTIVITY
Activities that can be performed by the different steps modeled. (note: steps can combine several activities - the
most obvious example is existing monolithic pipelines)

4.3. Inheritance diagram 21

railroadtracks Documentation, Release 0.3.1

class railroadtracks.rnaseq.Anyscript(executable=None)
Do anything.

Assets
alias of AssetsAnyscript

class railroadtracks.rnaseq.AssetsAnyscript(source, target=None)
Assets for Anyscript

class railroadtracks.rnaseq.AssetsCRCHeadTail(source, target=None)
Assets for CRCHeadTail

class railroadtracks.rnaseq.CRCHeadTail(executable=None)
Compute a CRC32-based checksum on the beginning (head) and end (tail) of a file as a cheap way to check
whether 2 files contain identical data. Might be useful with large files, however its main purpose is testing.

Assets
alias of AssetsCRCHeadTail

class railroadtracks.rnaseq.GzipFastqFilePair(filename1, filename2, **kwargs)
Pair of FASTQ files The default iterator will go through the paired entries in the file (not the rows), assuming
that they are in the same order. No check that this is the case (using IDs) is performed.

iter_seqqual_pairs()
Iterate over the pairs of (sequence+quality) in the file.

class railroadtracks.rnaseq.SamtoolsSorterByID(executable=None)

class railroadtracks.rnaseq.SorterAbstract
A sorting step.

22 Chapter 4. Model

CHAPTER

FIVE

EXTENDING THE FRAMEWORK

5.1 Writing custom steps

5.1.1 Simple case

A lot of the boilerplate handling is handled by parent classes. A custom class for a new tool will have to implement
code to:

• create an instance (constructor)

• get the version

• run the step

The base class for steps is the abstract class rnaseq.AssetStep:

class StepAbstract(object):
""" Abstract parent for steps. """
__metaclass__ = abc.ABCMeta
monicker under which the step will be known (must be unique within a step list)
_name = abc.abstractproperty()
default name for executable associated with the class
_default_execpath = abc.abstractproperty()

class of assets for the step (must be a child of :class:`AssetsStep`)
Assets = abc.abstractproperty()

activities = abc.abstractproperty(None, None, None,
"Activities associated with the step.")

version = abc.abstractproperty(None, None, None,
"Version of the executable associated with the step.")

@abc.abstractmethod
def run(self, assets, parameters=tuple()):

"""
:param assets: Assets to run the step with
:type assets: :class:`AssetsStep`
:param parameters: optional parameters
"""
raise NotImplementedError(_NOTIMPLEMENTED_ABSTRACT)

def uei(self, assets, parameters = tuple()):
FIXME: should return the unified execution command line
uei = UnifiedExecInfo(self._execpath, self._name,

23

railroadtracks Documentation, Release 0.3.1

assets.source, assets.target, parameters,
None, None) #logging_file and logging_level

return uei

Custom steps will just have to implement the methods and properties. For example, counting the reads after alignment
with htseq-count is defined as a child class of rnaseq.QuantifierAbstract, where Assets are defined:

class QuantifierAbstract(core.StepAbstract):
__metaclass__ = ABCMeta
Assets = AssetsQuantifier
activities = (ACTIVITY.QUANTIFY,)

Note: There is a class for each activity defined (see Activities), and these can be used as parent class for new steps
performing one activity The Assets is inherited from its parent class, and does not need to be specified further.

class AssetsQuantifier(core.AssetsStep):
Source = core.assetfactory('Source', [core.AssetAttr('alignedreads', BAMFile, ''),

core.AssetAttr('annotationfile', SavedGFF, '')])
Target = core.assetfactory('Target', [core.AssetAttr('counts', SavedCSV, '')])

One can note that specific subclasses of core.SavedEntityAbstract can be specified (here SavedCSV to
indicate that file produced by the counting step is a CSV file). The definition of assets represents a way to add a static
typing flavor to Python, as a number of checks are performed behind the hood by railroadtracks.rnaseq.

The definition of rnaseq.HTSeqCount is then implementing the remaining methods and attributes

class HTSeqCount(QuantifierAbstract):

_name = 'htseqcount'
_default_execpath = 'htseq-count'
_separator = '\t'
set of parameters to get htseq-count to work with references such
as bacteria or viruses (stored as a class attribute for convenience)
_noexons_parameters = ('--type=CDS', '--idattr=db_xref', '--stranded=no')

def __init__(self, executable=None):
if executable is None:

executable = type(self)._default_execpath
self._execpath = executable
self._version = None

@property
def version(self):

if self._version is None:
cmd = [self._execpath, '-h']
try:

logger.debug(subprocess.list2cmdline(cmd))
res = subprocess.check_output(cmd)

except OSError as ose:
raise UnifexError("""Command: %s
%s""" % (' '.join(cmd), ose))

m = re.match('^.*(version)?([^ \n]+)\.$', res.split('\n')[-2])
if m is None:

raise RuntimeError('Could not find the version number.')
self._version = m.groups()[1]

return self._version

24 Chapter 5. Extending the framework

railroadtracks Documentation, Release 0.3.1

def run(self, assets, parameters = tuple()):
FIXME: shouldn't strandedness be a better part of the model ?
source = assets.source
sortedbam = source.alignedreads
if not isinstance(source.alignedreads, BAMFileSortedByID):

htseq-count requires sorted entries
warnings.warn(("The source asset '%s' should ideally be sorted by read IDs. " +\

"We are sorting the file; use explicitly a '%s' rather than a '%s' "+\
"for better performances, as well as for reproducibility issues "+\
"(the sorting will use whatever 'samtools` is first found in the PATH)") \

% ("alignedreads", BAMFileSortedByID.__name__, BAMFile.__name__))
output_dir = os.path.dirname(assets.target.counts.name)
temp file name for the sorted output
sortedbam_fh = tempfile.NamedTemporaryFile(dir=output_dir, suffix=".bam", delete=False)
(cleaning temp files handled by Python, except sortedsam)
-- sort
sorter = SamtoolsSorterByID()
sorter_assets = sorter.Assets(sorter.Assets.Source(source.alignedreads),

sorter.Assets.Target(BAMFile(sortedbam_fh.name)))
sorter.run(sorter_assets)
sanity check:
if os.stat(sorter_assets.target.sortedbam.name).st_size == 0:

warnings.warn('The sorted BAM file is empty.')
sortedbam = sorter_assets.target.sortedbam

else:
sortedbam_fh = None

BAM to SAM
cmd_bam2sam = ['samtools', 'view', sortedbam.name]

build command line
cmd_count = [self._execpath,]
cmd_count.extend(parameters)
cmd_count.extend(['-', source.annotationfile.name])
cmd = cmd_bam2sam + ['|',] + cmd_count

logger.debug(subprocess.list2cmdline(cmd))
with open(os.devnull, "w") as fnull, \

open(assets.target.counts.name, 'w') as output_fh:
csv_w = csv.writer(output_fh)
HTSeq-count does not use column names in its output, unfortunately,
so we correct that
csv_w.writerow(['ID','count'])
p_bam2sam = subprocess.Popen(cmd_bam2sam, stdout=subprocess.PIPE, stderr=fnull)
p_htseq = subprocess.Popen(cmd_count,

stdin = p_bam2sam.stdout,
stdout = subprocess.PIPE,
stderr = fnull)

csv_r = csv.reader(p_htseq.stdout, delimiter='\t')
for row in csv_r:

csv_w.writerow(row)
p_htseq.stdout.flush()

p_htseq.communicate()[0]
if p_htseq.returncode != 0:

if sortedbam_fh is not None:
os.unlink(sortedbam_fh.name)

raise subprocess.CalledProcessError(p_htseq.returncode, cmd, None)
if sortedbam_fh is not None:

5.1. Writing custom steps 25

railroadtracks Documentation, Release 0.3.1

os.unlink(sortedbam_fh.name)
return (cmd, p_htseq.returncode)

5.1.2 Steps performing several activities

Slightly more work than for the simple case will be required, but not too much either.

5.2 Unified execution

A new script, extending or overriding the default execution layer in the package can be written very simply:

from railroadtracks import core, rnaseq

class MyStep(core.Stepabstract):
Definition of a new step
pass

NEW_STEPLIST_CLASSES = list()
for cls in rnaseq._STEPLIST_CLASSES:

NEW_STEPLIST.append(cls)
NEW_STEPLIST_CLASS.append(MyStep)

if __name__ == '__main__':
use the command and subcommands parsing
with the new list of steps
core.unified_exec(classlist = NEW_STEPLIST_CLASSES)

26 Chapter 5. Extending the framework

CHAPTER

SIX

UNIFIED EXECUTION

Almost each tool in a sequence of steps used for RNA-Seq processing is using idiosyncratic parameters or arguments.
This is making the task of a person wanting to use them both prone to errors (as these tools are also not always checking
thoroughly that the input and parameters make sense) and to a significant time spent reading scattered sources of
information (the documentation for the tools if often insufficient and much of the the knowledge about them is spread
throughout internet forums and mailing-lists)

$ alias unifex='python -m railroadtracks.unifex'

Three modes exist: run, version, and activities

$ unifex
usage: unifex.py [-h] {run,version,activities} ...
rnaseq.py: error: too few arguments

A step is then defined by the name of the executable (either as a name to be found in the ${PATH}, or as an absolute
path), as well as by the name of a modeling class.

Note: Specifying both the executable and the modeling class is required because a number of executables can perform
different tasks/activities.

For example, the command STAR can be used to build an index reference for subsequent alignment, or perform an
alignment. Specifying the model associated with the executable helps to remove the ambiguity.

$ unifex run star-index STAR
$ unifex run star-align STAR # astrology anyone ?

6.1 Version number

Obtaining the version number is achieved the same way for all steps

$ unifex version bowtie2-build bowtie2
2.1.0
$ unifex version star-align STAR
STAR_2.3.0e_r291
$ unifex version limma-voom R
3.18.3
$ unifex version edger R
3.4.0

27

railroadtracks Documentation, Release 0.3.1

6.2 Running a step

Running a step is also achieved essentially the same way for all steps. All steps have “sources” (that is input files) and
“targets” (that is destination/output files).

$ # bowtie2 (create index)
$ unifex run bowtie2-build bowtie2 \

-s <name>=<source file(s)> \
-t <name>=<target file(s)>

$ # STAR (create index)
$ unifex run star-index STAR \

-s <name>=<source file(s)> \
-t <name>=<target file(s)>

Note: Whenever the sources and targets expected by a given tool are not specified, the bash command fails and print
the list of missing parameters

$ unifex run edger R
The following sources must be defined (and are missing):
- counttable_fn
- sampleinfo_fn
The following targets must be defined (and are missing):
- diffexp_fn

6.3 Using a scheduler/Queueing system

The persistent layer can generate the bash commands for running the unified execution. This is making the use of any
existing queuing or scheduling system able to take bash script straightforward.

Note: This is possible, yet not fully documented. Please check the examples of recipes (Section Recipes) for details
about how it is already possible to run tasks from a Python script.

6.4 Docstrings

Unified execution layer.

One general way to run things on the command line.

class railroadtracks.unifex.Call(step, assets, parameters)
Unified call, turning a step + assets + parameters into a task.

execute()
Execute the task.

railroadtracks.unifex.build_AssetSet(AssetSet, values)

Parameters

• AssetSet –

• values – values to create instances in the AssetSet

railroadtracks.unifex.unified_exec_run(args, steplist, msg=[])
Run a command. :param args: arguments in a class such as the one returned by

28 Chapter 6. Unified execution

railroadtracks Documentation, Release 0.3.1

argparse.ArgumentParser.parse() :param steplist: sequence of known steps. The args will
be matched against this to find the model class. :type steplist: sequence of core.StepAbstract-inherting
instances :param msg: list with (eventual) messages

6.4. Docstrings 29

railroadtracks Documentation, Release 0.3.1

30 Chapter 6. Unified execution

CHAPTER

SEVEN

PERSISTENCE

Note: This part of the documentation should only concern users interested in moving the persistence layer to a
different system to store metadata associated with commands performed.

Tasks to be performed are stored persistently on disk. This is required to ensure that all steps computed, and the
sequence of steps leading to results, are conserved across restarts of the main process or of the system.

Currently, this is implemented in an SQLite database. Persistence/memoization for the DAG

class railroadtracks.hortator.DbID
DbID(id, new)

id
Alias for field number 0

new
Alias for field number 1

class railroadtracks.hortator.PersistentTaskList(db_fn, model, wd=’.’,
force_create=False)

List of tasks stored on disk.

class StoredEntityNoLabel
StoredEntityNoLabel(id, clsname, entityname)

clsname
Alias for field number 1

entityname
Alias for field number 2

id
Alias for field number 0

PersistentTaskList.finalsteps()
Concrete steps for which all targets are final

PersistentTaskList.get_parenttask_of_storedentity(stored_entity)
Return the task producing a stored entity. There should obviously only be one such task, and an Excep-
tion is raised if not the case. :param stored_entity: the stored entity in the database :type stored_entity:
StoredEntity :rtype: a StepConcrete_DbEntry namedtuple, or None

PersistentTaskList.get_sourcesofactivity(activity)
Retrieve the sources of steps performing a specific activity. :param activity: an activity :type activity:
Enum

31

railroadtracks Documentation, Release 0.3.1

PersistentTaskList.get_srcassets(concrete_step_id)
Return the source files for a given concrete step ID. :param concrete_step_id: ID for the concrete step in
the database. :rtype: generator

PersistentTaskList.get_targetassets(concrete_step_id)
Return the target files for a given concrete step ID. :param concrete_step_id: ID for the concrete step in
the database. :rtype: generator

PersistentTaskList.get_targetsofactivity(activity)
Retrieve the targets of steps performing a specific activity. :param activity: an activity :type activity: Enum

PersistentTaskList.get_targetsoftype(clsname)
Return all targets of a given type.

PersistentTaskList.get_targetstepconcrete(stored_entity)
Return the tasks using a given stored entity. :param stored_entity: the stored entity in the database.
:type stored_entity: can be StoredEntity or StoredSequence :rtype: a SepConcrete_DbEntry
namedtuple, or None

PersistentTaskList.id_step_activity(activity)
Conditionally add an activity (add only if not already present) :param activity: one actibity name :rtype:
ID for the activity as an integer

PersistentTaskList.id_step_type(activities)
Conditionally add a step type (add only if not already present). :param activities: sequence of activity
names :rtype: ID for the step type as an integer

PersistentTaskList.id_step_variant(step, activities)
Return a database ID for the step variant (creating a new ID only of the variant is not already tracked)

Parameters

• step (core.StepAbstract) – a step

• activities – a sequence of activity names

Return type ID for a step variant as an int1.

PersistentTaskList.id_stepconcrete(step_variant_id, sources, targets, parameters,
tag=1)

Conditionally add a task (“concrete” step), that is a step variant (executable and parameters) to which
source and target files, as well as parameters, are added.

Parameters

• step_variant_id (integer) – ID for the step variant

• sources (AssetSet) – sequence of sources

• targets (AssetSet) – sequence of targets

• parameters (a sequence of str2) – list of parameters

• tag (a sequence of int3) – a tag, used to performed repetitions of the exact same task

Return type DbID

PersistentTaskList.id_stepparameters(parameters)
Conditionally add parameters (add only if not already present) :param parameters: sequence of parameters
:rtype: ID for the pattern as a DbID.

1http://docs.python.org/library/functions.html#int
2http://docs.python.org/library/functions.html#str
3http://docs.python.org/library/functions.html#int

32 Chapter 7. Persistence

http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#int

railroadtracks Documentation, Release 0.3.1

PersistentTaskList.id_stored_entity(cls, name)
Conditionally add a stored entity (add only if not already present) :param cls: Python class for the stored
entity :param name: Parameter “name” for the class “cls”. :rtype: ID for the pattern as a DbID.

PersistentTaskList.id_stored_sequence(cls, clsname_sequence)
Conditionally add a stored entity (add only if not already present) :param clsname_sequence: Sequence of
pairs (Python class for the stored entity, parameter “name” for the class “cls”) :rtype: ID for the pattern as
a DbID.

PersistentTaskList.iter_finaltargets()
Targets not used as source anywhere else.

PersistentTaskList.iter_steps()
Iterate through the concrete steps

PersistentTaskList.statuslist
Status list

PersistentTaskList.version
Version for the database and package (mixing versions comes at one’s own risks)

class railroadtracks.hortator.Step(step, sources, targets, parameters, model)
When used in the context of a StepGraph, a Step is small graph, or subgraph, consituted of a vertex, connected
downstream to targets and upstream to sources. For more information about a StepGraph, see the documentation
for it.

class railroadtracks.hortator.StepGraph(cache)
The steps to be performed are stored in a directed acyclic graph (DAG).

This graph can be thought of as a two-level graph. The higher level represents the connectivity between steps
(we will call supersteps), and the lower-level expands each step into sources, targets, and a step using sources to
produce targets.

There is a persistent representation (currently a mysql database), and this class is aiming at isolating this imple-
mentation detail from a user.

add(step, assets, parameters=(), tag=1)
Add a step, associated assets, and optional parameters, to the StepGraph.

The task graph is like a directed (presumably) acyclic multilevel graph. Asset vertices are only connected
to step vertices (in other words asset vertices represent connective layers between steps).

Parameters

• step (a core.StepAbstract (or of child classes) object) – The step to be added

• assets (a core.AssetStep (or of child classes) object) – The assets linked to the step
added. If assets.target is undefined, the method will define it with unique identifiers
and these will assigned in place.

• parameters (A sequence of str4 elements) – Parameters for the step

• tag – A tag to differentiate repetitions of the exact same task.

Return type StepConcrete_DbEntry as the entry added to the database

cleantargets_stepconcrete(step_concrete_id)
Clean the targets downstream of a task (step_concrete), which means erasing the target files and (re)setting
the tasks’ status to ‘TO DO’.

Parameters step_concrete_id – A task

4http://docs.python.org/library/functions.html#str

33

http://docs.python.org/library/functions.html#str

railroadtracks Documentation, Release 0.3.1

destinationwalk_stepconcrete(step_concrete_id, func_stored_entity, func_stored_sequence,
func_step_concrete, func_storedentity_stepconcrete,
func_stepconcrete_storedentity)

Walk down the path.

destinationwalk_storedentity(stored_entity, func_stored_entity, func_stored_sequence,
func_step_concrete, func_storedentity_stepconcrete,
func_stepconcrete_storedentity)

Walk down the path.

provenancewalk_storedentity(stored_entity, func_stored_entity, func_stored_sequence,
func_step_concrete, func_storedentity_stepconcrete,
func_stepconcrete_storedentity)

Walk up the path. :param stored_entity_id: the stored entity to start from :param func_stored_entity:
a callback called with each stored entity :param func_step_concrete: a callback called with each step
concrete :param func_storedentity_stepconcrete: a callback called with each link between a stored entity
and a step concrete :param func_stepconcrete_storedentity: a callback called with each link between a step
concrete and a stored entity

static stepconcrete_dirname(stepconcrete_id)
Name of the directory corresponding to an ID.

Parameters stepconcrete_id – ID for a directory.

railroadtracks.hortator.TaskStatusCount
alias of TaskStatus

34 Chapter 7. Persistence

CHAPTER

EIGHT

INDEX AND TABLES

• genindex

• modindex

• search

35

railroadtracks Documentation, Release 0.3.1

36 Chapter 8. Index and tables

PYTHON MODULE INDEX

r
railroadtracks.easy, 15
railroadtracks.hortator, 31
railroadtracks.rnaseq, 21
railroadtracks.unifex, 28

37

railroadtracks Documentation, Release 0.3.1

38 Python Module Index

INDEX

Symbols
__init__() (railroadtracks.easy.Environment method), 16
__init__() (railroadtracks.easy.Project method), 16

A
activities (railroadtracks.easy.Environment attribute), 16
ACTIVITY (class in railroadtracks.rnaseq), 21
ActivityCount (class in railroadtracks.easy), 15
add() (railroadtracks.easy.TaskSet method), 18
add() (railroadtracks.hortator.StepGraph method), 33
add_task() (railroadtracks.easy.Project method), 16
all_child_tasks() (railroadtracks.easy.Task method), 17
Anyscript (class in railroadtracks.rnaseq), 22
Asset (class in railroadtracks.easy), 15
Assets (railroadtracks.rnaseq.Anyscript attribute), 22
Assets (railroadtracks.rnaseq.CRCHeadTail attribute), 22
AssetsAnyscript (class in railroadtracks.rnaseq), 22
AssetsCRCHeadTail (class in railroadtracks.rnaseq), 22

B
build_AssetSet() (in module railroadtracks.unifex), 28

C
Call (class in railroadtracks.unifex), 28
call (railroadtracks.easy.Task attribute), 17
call_factory() (in module railroadtracks.easy), 18
child_tasks() (railroadtracks.easy.Task method), 17
cleantargets_stepconcrete() (railroadtracks.hortator.StepGraph method), 33
clsname (railroadtracks.hortator.PersistentTaskList.StoredEntityNoLabel attribute), 31
command_line() (in module railroadtracks.easy), 18
count (railroadtracks.easy.ActivityCount attribute), 15
CRCHeadTail (class in railroadtracks.rnaseq), 22

D
db_fn (railroadtracks.easy.Project attribute), 16
DbID (class in railroadtracks.easy), 15
DbID (class in railroadtracks.hortator), 31
destinationwalk_stepconcrete() (railroadtracks.hortator.StepGraph method), 33
destinationwalk_storedentity() (railroadtracks.hortator.StepGraph method), 34
dirname (railroadtracks.easy.Task attribute), 17

39

railroadtracks Documentation, Release 0.3.1

E
entity (railroadtracks.easy.Asset attribute), 15
entityname (railroadtracks.hortator.PersistentTaskList.StoredEntityNoLabel attribute), 31
Environment (class in railroadtracks.easy), 16
execute() (railroadtracks.easy.Task method), 17
execute() (railroadtracks.unifex.Call method), 28

F
finalsteps() (railroadtracks.hortator.PersistentTaskList method), 31

G
get_parenttask_of_storedentity() (railroadtracks.hortator.PersistentTaskList method), 31
get_sourcesofactivity() (railroadtracks.hortator.PersistentTaskList method), 31
get_srcassets() (railroadtracks.hortator.PersistentTaskList method), 31
get_targetassets() (railroadtracks.hortator.PersistentTaskList method), 32
get_targetsofactivity() (railroadtracks.easy.Project method), 16
get_targetsofactivity() (railroadtracks.hortator.PersistentTaskList method), 32
get_targetsoftype() (railroadtracks.easy.Project method), 16
get_targetsoftype() (railroadtracks.hortator.PersistentTaskList method), 32
get_targetstepconcrete() (railroadtracks.hortator.PersistentTaskList method), 32
get_task() (railroadtracks.easy.Project method), 17
GzipFastqFilePair (class in railroadtracks.rnaseq), 22

I
id (railroadtracks.easy.DbID attribute), 15
id (railroadtracks.hortator.DbID attribute), 31
id (railroadtracks.hortator.PersistentTaskList.StoredEntityNoLabel attribute), 31
id_step_activity() (railroadtracks.hortator.PersistentTaskList method), 32
id_step_type() (railroadtracks.hortator.PersistentTaskList method), 32
id_step_variant() (railroadtracks.hortator.PersistentTaskList method), 32
id_stepconcrete() (railroadtracks.hortator.PersistentTaskList method), 32
id_stepparameters() (railroadtracks.hortator.PersistentTaskList method), 32
id_stored_entity() (railroadtracks.hortator.PersistentTaskList method), 32
id_stored_sequence() (railroadtracks.hortator.PersistentTaskList method), 33
info (railroadtracks.easy.Task attribute), 17
iter_finaltargets() (railroadtracks.hortator.PersistentTaskList method), 33
iter_seqqual_pairs() (railroadtracks.rnaseq.GzipFastqFilePair method), 22
iter_srcassets() (railroadtracks.easy.Project method), 17
iter_steps() (railroadtracks.hortator.PersistentTaskList method), 33
iter_targetassets() (railroadtracks.easy.Project method), 17

M
model (railroadtracks.easy.Project attribute), 17

N
name (railroadtracks.easy.ActivityCount attribute), 15
new (railroadtracks.hortator.DbID attribute), 31
newproject (railroadtracks.easy.Project attribute), 17

P
parent_tasks() (railroadtracks.easy.Task method), 17
PersistentTaskList (class in railroadtracks.hortator), 31
PersistentTaskList.StoredEntityNoLabel (class in railroadtracks.hortator), 31

40 Index

railroadtracks Documentation, Release 0.3.1

primordial_tasks() (railroadtracks.easy.Task method), 17
Project (class in railroadtracks.easy), 16
project (railroadtracks.easy.Task attribute), 17
provenancewalk_storedentity() (railroadtracks.hortator.StepGraph method), 34

R
railroadtracks.easy (module), 15
railroadtracks.hortator (module), 31
railroadtracks.rnaseq (module), 21
railroadtracks.unifex (module), 28
remove() (railroadtracks.easy.TaskSet method), 18

S
SamtoolsSorterByID (class in railroadtracks.rnaseq), 22
SorterAbstract (class in railroadtracks.rnaseq), 22
status (railroadtracks.easy.ActivityCount attribute), 15
status (railroadtracks.easy.Task attribute), 17
status() (railroadtracks.easy.TaskSet method), 18
statuslist (railroadtracks.hortator.PersistentTaskList attribute), 33
Step (class in railroadtracks.hortator), 33
stepclasses (railroadtracks.easy.Environment attribute), 16
stepconcrete_dirname() (railroadtracks.hortator.StepGraph static method), 34
StepGraph (class in railroadtracks.hortator), 33
stepinstances (railroadtracks.easy.Environment attribute), 16

T
Task (class in railroadtracks.easy), 17
Task2 (in module railroadtracks.easy), 18
task_id (railroadtracks.easy.Task attribute), 17
TaskSet (class in railroadtracks.easy), 18
TaskStatusCount (in module railroadtracks.hortator), 34

U
unifex_cmd() (railroadtracks.easy.Task method), 17
unifex_cmdline() (railroadtracks.easy.Task method), 18
unified_exec_run() (in module railroadtracks.unifex), 28

V
values() (railroadtracks.easy.TaskSet method), 18
version (railroadtracks.hortator.PersistentTaskList attribute), 33

W
wd (railroadtracks.easy.Project attribute), 17

Index 41

	Introduction
	Tutorial

	Installation
	Requirements
	Installation

	Recipes
	Steps and assets
	Setup
	Simple recipe
	Loops, nested loops, and many variants
	Docstrings
	Troubleshooting

	Model
	Overview
	Activities
	Inheritance diagram
	Docstrings

	Extending the framework
	Writing custom steps
	Unified execution

	Unified execution
	Version number
	Running a step
	Using a scheduler/Queueing system
	Docstrings

	Persistence
	Index and tables
	Python Module Index
	Index

